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Abstract — The paper reviews the fundamental principles 
of mechanical crimp connections and provides a simple 
predictive model for achieving acceptable tubular crimps 
with a solid conductor.  This model is based on well-
established strain-strain relationships of cylindrical bodies 
in elasticity mechanics.  The model is used to relate the 
residual contact load in the crimp junction to the 
mechanical yield strength and elastic springback properties 
of both the conductor and the crimp barrel.  It is shown 
that the relative yield strength and relative elastic modulus 
of the materials in contact must meet specific conditions to 
achieve a crimp junction with acceptable strength and 
electrical contact resistance.  The paper also provides an 
explanation for the minimum compaction required to 
achieve a reliable electrical crimp connection in stranded 
wire connections. 
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I.  INTRODUCTION 

Crimp connector technology is widely used for 
interconnecting electronic devices and for tapping electrical 
power in high-power distribution networks.  In a crimp 
connection, a bare conductor is attached to the connector by 
locating the end of the conductor in the gripping section (i.e. 
the barrel, sleeve or “folding wings”) of the connector, and 
squeezing the connector and conductor together using a special 
crimping tool.  Crimping causes extensive plastic deformation 
of the conductor and connector.  In order to generate a reliable 
crimp connection, this deformation must lead to a sufficiently 
large residual contact force between the connector terminal 
and the conductor after the crimping tool is released.  This 
residual contact force is determined by the relative elastic 
springback of the deformed barrel and conductor on release of 
the crimping tool [1], as will be explained in greater detail 
later.   

The wide range of applications of crimp connections from 
electronic devices to large power connections in electrical grid 
networks is addressed in several publications [2 - 4].  Despite 
these wide-ranging applications, crimp connector design relies 
largely on an empirical approach with little resort to 
engineering formulae or other analytical information as is 

often done in the design of separable spring-loaded 
connectors.  In the empirical approach, crimp design is often 
guided by data derived from computer modeling, such as the 
distribution of residual mechanical stresses in the formed 
crimp junction [5 – 9].  Design is also guided by data 
stemming from field experience by satisfying selected but 
empirical criteria relating to geometrical crimp design and 
dimensions.  For electronic applications, the integrity of a 
crimp junction is assessed using various geometrical 
parameters such as crimp height, crimp width, crimp 
deformation etc. [10, 11].  Integrity is also evaluated in part by 
the degree of strand compaction in the crimp joint.  Crimp 
integrity is considered excellent if strand compaction is 
complete, wherein strands are plastically deformed and 
squeezed together without significant gaps both between 
themselves and with the connector sleeve walls [1 – 4].  Such 
a junction is usually characterized by excellent mechanical 
pull-strength, low electrical resistance and high stability under 
a variety of mechanical, electrical and thermal stresses [1,2].  
 

The reason for the largely empirical approach to crimp 
design stems from the complexity of the deformation process 
in the conductor and connector terminal [5 - 9] and the 
challenge of describing deformation in relatively simple 
analytical terms.  The present paper proposes a simple 
analytical guideline for the design of cylindrical crimp 
connections, particularly where the strands are fully 
compacted.  This paper reviews the fundamental principles of 
mechanical crimp connections and provides a simple 
predictive model for achieving an acceptable crimp connection 
in a cylindrical barrel terminal with a solid or well-compacted 
conductor.  The model is based on well-established strain-
strain relationships of cylindrical bodies in elasticity 
mechanics.  It is shown that the relative yield strength and 
relative elastic modulus of the materials in contact must meet 
specific conditions to generate a crimp joint with acceptable 
strength and electrical contact resistance.  The paper also 
provides an explanation for the minimum compaction required 
to achieve a reliable electrical crimp connection in stranded 
wire connections. 
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Fig. 1.  Schematic diagram of solid conductor in cylindrical barrel. 
 

II. FUNDAMENTAL PRINCIPLES OF A CRIMP 
CONNECTION 

A. Elastic Deformation 

 We consider the simple situation of a tubular barrel of 
inner radius a and outer radius b being crimped over a solid 
cylindrical conductor also of radius a as illustrated 
schematically in Fig. 1.  We will further assume that the 
materials of both the conductor and barrel are elastic-perfectly 
plastic as illustrated schematically in Fig. 2.    The materials 
are characterized by an elastic modulus and yield strength 
respectively of EB and YB for the barrel, and EC and YC for the 
conductor.  Although we consider the case of YC > YB in the 
illustrative example considered below, the results will not 
depend on this assumption.  We now follow the sequence of 
events during crimping.  
 

We assume that the conductor fits into the barrel initially 
with negligible interference.  If a constant and uniform 
cylindrical pressure pext  is applied over the outer barrel 
surface, it is known that during elastic deformation (i.e. before 
plastic flow) the radial and circumferential elastic stress 
components in the barrel, denoted respectively as σB, r (r) and 
σB,θ (r), are given as [10] 
 

    σB, r (r) = [a2 b2(pext - pi)/r2 + pi a2 - pext b2]/(b2 - a2)   (1) 
 

and 
 

    σB,θ (r) = [ - a2 b2(pext - pi)/r2 + pi a2 - pext b2]/(b2 - a2)   (2) 
 

where r ( ≥ a ) is the radial distance from the center and pi  is 
the internal pressure generated by the conductor at r  =  a.  The 
radial displacement uB(r) at radial distance r within the barrel 
is given as [10] 
 

             uB (r)  =  r[ σB, θ (r)  -  νB σB, r (r) ] / EB   (3) 
 

where νB is Poisson’s ratio for the barrel material.  Similarly, 
the relationships corresponding to Eqs. (1) – (3) for the 
conductor with r  ≤  a are [10] 
 
 σC, r (r) =  - pi   (4) 
 σC,θ (r) =  - pi   (5) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Stress-strain diagram for an elastic-perfectly plastic material. 
 
 
with a radial displacement   
 

                  uC (r)  = - r pi [ 1  -  νC  ] / EC   (6) 
 

where νC is Poisson’s ratio for the conductor material.   
 

Since the displacements of the conductor and barrel are 
the same at the boundary r = a, the boundary  condition uB(a) 
= uC(a) immediately yields the following expression for the 
pressure pi in terms of pext 
       
 pi  =  K -1  pext   (7) 
 
with 
 

K = [(b2 + a2) + (1 - ν)(EB/EC)(b2 - a2)]/[(b2 + a2) +  
           ( 1 - ν ) ( b2 - a2 ) ]   (8) 
 

where we have assumed νB = νC = ν.  The pressure pi at the 
conductor-barrel interface may be shown to be expressed in 
terms of the displacement uC (a) as 

 

  pi  =  { K EC / [ a ( 1 - ν ) ] } uC (a)   (9) 
 

where we recall that uC (a) is the elastic displacement of the 
conductor surface (and the barrel inner surface) at the location 
r = a.  Equation (9) states that the radial stress at the crimping 
interface increases linearly with displacement, as is expected 
since the materials behave linearly in the elastic region.  
 
B. Plastic Deformation 

 We now follow the sequence of events as the applied 
external stress pext is increased first to the yield strength of the 
barrel material and then to the yield point of the conductor 
material (since YC > YB) during crimping.  As illustrated 
schematically in Fig. 3, the mechanical stress pi increases 
linearly along the line OA as the elastic displacement at the    
conductor-barrel interface is increased, as indicated by Eq. (9).  
At point A, the crimping stress reaches the yield strength YB 
of the barrel, thus leading to a decrease in the constant K since 
EB ≈ 0 in Eq. (8) beyond the yield point of the barrel.  At point  

162



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Variation of the compressive stress pi at the conductor surface with 
                compressive radial displacement of the conductor. 
 
D, the crimping stress reaches the yield strength YC of the 
conductor material and both the conductor and barrel undergo 
metal flow.  Depending on the flow rate and physical 
constraints of both the barrel and the conductor, the applied 
stress pext may increase beyond the yield point of the mating 
components but the following description does not depend on 
the maximum value of pext during crimping.  The only 
quantities of importance are the final radii of the conductor 
and barrel when crimping is completed and the crimp tool is 
released.  We will assume that the final radius of the conductor 
(and barrel bore) before release of the crimping tool, is a0.  
The corresponding outer radius of the barrel is denoted as b0.  
These radii are illustrated in Fig. 4(a) and 4(b) respectively.  
We now consider the events as pext  is suddenly decreased to 
zero i.e. the crimp tool is released. 
 
C. Formation of Crimp Connection 
 
 A heuristic way of understanding the effect of elastic 
springback is to visualize both the conductor and the barrel as 
separate “free” isolated objects while still in the state of 
maximum deformation generated by the crimping tool.  At the 
point of maximum deformation, the radius a0 of the “free” 
conductor will be identical with the barrel bore radius.  On 
release of the crimping tool, the visualized “free” isolated 
objects will spring back elastically to radial dimensions 
associated with the absence of any applied external load.  Such 
springback will increase both the radius of the “free” 
conductor by an amount ΔaC,0 and the radius of the “free” 
barrel bore by an amount ΔaB,0 as illustrated respectively in 
Figs. 4(a) and 4(b).  The outer radius of the barrel will increase 
by ΔbB,0.  If the conductor and barrel are now visualized as 
reunited, it is clear that an acceptable crimp connection is 
achieved only if ΔaC,0 exceeds ΔaB,0.   In the connection, the 
final radial extension of the conductor in the barrel will be 
smaller than ΔaC,0 since the conductor is constrained  by  the  
barrel.  By the same token, the radial  extension  of  the  barrel 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4.  Visualization of (a) conductor and (b) barrel as “free” elements 
                  before and after elastic springback .  The magnitudes of the 
                  increase in radius ΔaC,0 , ΔaB,0 and ΔbB,0 are exaggerated for ease 
                  of illustration. 
 
bore will  be  larger  than  ΔaB,0  since  the condition ΔaB,0 < 
ΔaC,0 exposes the barrel to an internal pressure generated by 
the conductor.  Thus the conductor will be in a state of 
compressive stress while the barrel will be under tensile stress.   
 

We now evaluate the final residual crimping force 
between the conductor and barrel by referring to the schematic 
circumferential stress-displacement curves of the separate 
“free” components, illustrated in Fig. 5, as follows:  as soon as 
the crimping stress on the conductor falls below the yield 
strength YC the conductor returns to elastic deformation and 
springs back along the line EF (the abscissa in Fig. 5 refers to 
compressive displacement so a decrease in this displacement 
along EF corresponds to a  springback  ΔaC of  the conductor).    

(a) 

(b) 
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Fig. 5  Generation of circumferential compressive stress at the conductor- 
                barrel interface for the case where YC > YB. 
 
If  the crimping stress on  the  conductor   at   point   F   is   σcr   
then   the  radial displacement ΔaC of the conductor from the 
radius a0 associated with the decrease ( YC - σcr ) in 
compressive stress can be calculated from Eq. (6) as   
      

    ΔaC  =  uC (a0)  = a0 ( YC - σcr )  [ 1  -  ν  ] / EC       (10) 
 

Similarly, as soon as the crimping stress on the barrel falls 
below the yield strength YB the barrel returns to elastic 
deformation and springs back along the line BC.  If now we 
re-unite the conductor and barrel so that one fits in the other, 
two  conditions  must  be  satisfied:  
(i) the radial displacement of the conductor ΔaC given by Eq, 
(10) must match the radial displacement ΔaB of the bore of the 
barrel and  
(ii) the magnitude of the radial mechanical stress at the 
conductor surface and at the bore surface of the barrel must be 
identical. 
 
 A crimp is generated where the barrel inner surface is 
under a radial compressive stress σcr.  The circumferential 
tensile stress in the barrel at the interface is denoted as -σcr’.  
Points F and C respectively on curves EF and BC in Fig. 5 
identify the radial displacement at which these two conditions 
are satisfied.  It is important to note the following features in 
Fig. 5:  the origin “O” associated with the beginning of the 
deformation process does not apply after plastic deformation.  
The origin associated with the plastically deformed conductor 
is located at the point where the extension of line EF crosses 
the abscissa.  The origin associated with the plastically 
deformed barrel is located at the intersection of line BC with 
the abscissa.  We now evaluate the radial displacement ΔaB of 
the barrel bore and the final crimping stress σcr. 
 

From Eqs.(1) and (2), the change in radial and 
circumferential stresses at the barrel bore surface when the 
external stress is reduced from YB to zero  (i.e. when the crimp 
tool is released) and the internal stress is correspondingly 
reduced from YB to σcr are given respectively as  
 ΔσB, r (a0)  = - (σcr - YB)     (11) 

 
and          ΔσB,θ (a0) = YB + σcr(b0

2 + a0
2)/(b0

2 - a0
2)         (12) 

 
From Eqs. (3), (11) and (12), the radial displacement ΔaB of 
the barrel bore is calculated as 
 

ΔaB = ( a0 / EB ){(1 - ν)YB +  
                               σcr[ν + (b0

2 + a0
2)/(b0

2 - a0
2) ]}        (13) 

 

Using Eq. (13) and the expression for ΔaC from Eq. (10), the 
crimp condition  ΔaB = ΔaC immediately yields the value of σcr 
as 
               σcr = YB (rY  -  rE) / (1 + m rE / ( 1  - ν ))  (14) 
 

where                          rY  =  YC / YB 
 

                                    rE  =   EC / EB 
 

                      m  =  ν + (b0
2 +  a0

2)/(b0
2 - a0

2) 
 

 On the basis of the present model, Eq.(14) leads to two 
major conclusions:  (i) a crimp connection is generated only 
where the mating materials are such that rY  >  rE (or the ratio 
SYE = rY / rE >1), and (ii) for mating materials satisfying SYE > 
1 the crimp compressive stress increases linearly with the 
yield strength YC of the conductor.  It is important to note that 
a crimp connection may still be formed where EC <  EB and YC 
< YB  provided the condition SYE > 1 still holds.  The curves 
illustrating schematically the elastic springback of the 
conductor and barrel in the latter situation are illustrated in 
Fig. 6.  It may be noted that the crimping stress σcr in this case 
is smaller than illustrated in Fig. 5.  

III.  EXAMPLES OF CRIMP CONNECTIONS 

We now evaluate the compressive stress from Eq. (14) for 
a variety of situations.  Table 1 lists typical values of the 
elastic modulus and yield strength for several materials used in 
electrical connections.  According to the data of Table 1,  a  
cylindrical  conductor  made  of  hard-drawn copper cannot be 
crimped to a tube of cold-worked C26000 brass since this case 
corresponds to rY = 0.83 and rE  =1.19 and the condition SYE > 
1 is not satisfied.  On the other hand, the copper conductor can  
 
 

 

 

 

 

 

 

 
 
 

Fig. 6  Generation of circumferential compressive stress at the conductor- 
            barrel interface for the case where YC < YB. 

164



 

 

 

 

 

 

 

 

 

 
Fig. 7   Compression stress in a crimp connection consisting of solid copper 

conductor and a cylindrical barrel made from a copper-base alloy. 
 
 
be crimped to an annealed C26000 tube since in this case rY 
increases to 2.41, thus leading to SYE > 1.  Similarly, the 
copper conductor can be crimped to an annealed C51000 tube 
but not to the same alloy in the hard-drawn condition.   
 

Figure 7 illustrates curves calculated from Eq. (14) 
showing the compressive stress on a copper conductor as a 
function of barrel thickness, after the conductor and the barrel 
have been plastically deformed.  The final crimped conductor 
radius is assumed to be reduced to a0 =  0.512 mm (gauge # 18 
wire).  The barrel is made from annealed C26000 brass or 
annealed C51000 phosphor-bronze.  The values of YC  and YB  
used  in  the calculations are those listed in Table 1 and the 
Poisson ratio ν is taken as 0.3.  The final outer radius of the 
barrel in Eq. (14) was evaluated as b0=a0 + d  where d is the 
barrel thickness.  The data of Fig. 7 indicate that there is not a 
great deal of difference between the final compression 
pressure achieved between the copper conductor and either the 
brass or the phosphor-bronze barrel. In contrast, the conductor 
cannot be crimped to a  tube made from beryllium-copper 
C17200 in either of  the metallurgical conditions shown in 
Table 1 since the condition  SYE > 1 is not satisfied in these 
cases.  

 
 Recently, M. Runde and co-workers have reported results 
of performance tests on a variety of large tubular aluminum 
compression splices connected to stranded aluminum power 
conductors [4,11].  Splice performance was assessed on the 
basis of resistance measurements during short-circuit tests and 
thermal cycling as specified by the IEC 61238-1 [12] standard, 
and from inspections of cross-sectioned connections.  It was 
found that a large mechanical deformation in a compression 
splice improved connector performance significantly and that 
relatively soft (annealed) conductors led to inferior 
performance than hard-drawn conductors.  Soft conductors 
that hardened significantly during deformation when the splice 
was installed were also found to pass the tests.  All these 
results are consistent with the predictions of Eq. (14) for the 
following reason.   In  the  case  of  an  aluminum  barrel and a  

Table 1:   Selected Mechanical Properties of 
                Typical Electrical Contact Materials 

 

well-compacted aluminum  conductor,  the  condition  rE  ≈ 1  
holds.  Since in the work described in [4,11], the barrel was 
soft to allow for a large  deformation  during  compression  we  
would expect the yield strength YB to be relatively small.  
According to Eq.(14), an acceptable crimp was possible only 
where SYE ≈ rY > 1 i.e. only where the conductor was 
significantly harder than the splice material, or was hardened 
due to deformation during splice installation.  This conclusion 
is further supported by the data of Fig.8. 
 

Figure 8 shows curves calculated from Eq.(14) for a tubular 
aluminum splice crimped to a solid aluminum conductor.  The 
curves    attempt    to   simulate   the   experimental   conditions  

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 8  Compression stress in a crimp connection consisting of solid aluminum 

conductor and a cylindrical barrel made from an aluminum-base alloy. 

 
         Materials 

 

 
Elastic Modulus 
       [ GPa ] 

 
   Yield Strength 
       [ MPa ] 

           copper 
      (oxygen-free,  
       cold-drawn) 

 
          119 

 
           320 

     C26000 brass 
    (cold-worked) 

 

          100 
 

           386 

     C26000 brass 
       (annealed) 

 

          100 
 

           133 

         C51000 
   phosphor-bronze 
          (hard) 

 
          110 

 
           581 

         C51000 
   phosphor-bronze 
       (annealed) 

 
          110 

 
           175 

         C17200 
   beryllium-copper 
    hardened TF00 

 
          127 

 
         1,050 

         C17200 
   beryllium-copper 
mill-hardened TM00

 
          127 

 
           593 

       aluminum 
    hard conductor 

 

           70 
 

           150 

       aluminum 
    soft conductor 

 
           70 

 
             82 

 

   aluminum barrel 
 

 

           70 
 

             78 
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described  in references [4] and [11] where the initial 
conductor diameter was 18.2 mm [4].  The curves in the graph 
describe the compressive stress developed respectively with a 
soft and  a hard conductor as a function of barrel thickness.  In 
these evaluations, the aluminum conductor is assumed to have 
been plastically deformed to a final conductor diameter of 16.4 
mm i.e. a0 = 8.2 mm, from an initial diameter of 18.2 mm.  
The Vickers hardness of the aluminum barrel was taken as 24 
kg mm-2 [4].  The Vickers hardness of the conductor was 
assumed as 46 kg mm-2 and 25 kg mm-2 respectively for the 
hard and for the soft aluminum conductor [4].  If the Vickers 
harness is denoted as H, the value of the yield strength is given 
as H / 3 to a good approximation [13].  The values of YC and 
YB used in the evaluations of compression stress, and 
calculated from the Vickers harness, are listed as the last two 
entries in Table 1.  The Poisson ratio ν is taken as 0.3.   
 

The data of Fig. 8 indicate that the compression pressure 
achieved with the hard alloy is considerably larger than the 
pressure generated with the soft alloy.  This result also 
indicates that the electrical contact resistance generated in the 
compression joint should be smaller with the hard alloy than 
with the soft alloy, in the absence of a significant difference in 
the electrical resistivity of the two alloys.  On the basis of the 
results shown in Fig. 8, we conclude that the electrical joint 
achieved with the hard alloy should be the more reliable.  This 
conclusion is indeed consistent with the experimental findings 
of Runde et al [4,11].   

V.  CONNECTIONS WITH STRANDED CONDUCTOR 

 The formation of a crimp connection between a 
cylindrical barrel and a stranded conductor is similar to that 
generated with a solid conductor, but only after the strands 
have been fully compacted and if the mechanical stress across 
the entire conductor cross section varies uniformly.  The 
degree of barrel deformation required to achieve full 
compaction may be estimated as follows.  

 Detailed evaluations of the packing density of identical 
cylindrical strands within one large cylinder as illustrated in 
Fig. 9(a) [14,15] show that the minimum void density reaches 
about 20%, but only for a sufficiently large number of 
undeformed strands.  Results of these detailed evaluations, 
showing the dependence of the “minimum” void fraction on 
the number N of undeformed strands of radius r packed into a 
cylinder of radius R, are indicated in Fig. 9(b).  In this graph, 
note that the jagged shape of the curve is real and stems from 
changes in the geometrical arrangement of the packed 
cylinders as more small cylinders are packed into the holding 
tube.  The above-listed evaluations thus suggest that, for a 
sufficiently large number of cylindrical strands, the cross-
sectional area of a crimp barrel would have to be reduced by 
about 20% to achieve full strand compaction.  It is only after 
such compaction that the Eq. (14) would be applicable to a 
cylindrical stranded crimp connection. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9   (a)  Examples of packing of circles in a larger circle [15], 
           (b)  void density as a function of number of circles calculated 

                            from reference [15]. 

V.  SUMMARY 

The paper has reviewed fundamental principles underlying the 
formation of mechanical crimp connections and provides a 
simple predictive model for achieving acceptable tubular 
crimps with a solid conductor.  This model is based on well-
established stress-strain relationships of cylindrical bodies in 
elasticity mechanics to relate the residual contact load in the 
crimp junction to the mechanical yield strength and elastic 
springback properties of both the conductor and the crimp 
barrel.  On the basis of this model, it has been shown that the 
relative yield strength and relative elastic modulus of the 
materials in contact must meet specific conditions to achieve a 
crimp junction with acceptable contact stress and hence 
acceptable electrical contact resistance.   

 
REFERENCES 

 
[1]  R.W. Rollings, “Design of Reliable Separable Power Connector with 

Base Metal Contacts for Telephone Equipment Applications”, IEEE 
Trans. Parts, Hybrids, Packaging, PHP-11, p. 45, 1975. 

[2]  R. S. Mroczkowski, Electrical Connector Handbook, McGraw-Hill, 
New York, 1998. 

[3] T.M. Shoemaker and J.E. Mack, The Lineman’s and Cableman’s 
Handbook, chapter 23, McGraw-Hill, New York, 2007. 

N = 18 N = 44 
(a) 

(b) 

166



[4] M. Runde, H. Jensvold, H. and M. Jochim, “Compression Connectors for 
Stranded Aluminum Power Connectors”, IEEE Trans. Power Delivery, 
19, p. 933, 2004. 

[5]  S. Kugener, “Simulation of the Crimping Process by Implicit and 
Explicit Finite Element Methods”, AMP J. Technology, 4, p. 8, 1995. 

[6]  T. Morita, K. Ohuchi, M. Kaji, Y. Saitoh, J. Shioya, K. Sawada, M. 
Takahashi, T. Kato and K. Murakami, “Numerical Model of Crimping by 
Finite Element Method”, Proc. 41st IEEE Holm Conf. on Elect. Contacts, 
p. 151, 1996. 

[7]  G. Villeneuve, D. Kulkarni, P. Bastnagel and D. Berry, “Dynamic Finite 
Element Analysis Simulation of the Terminal crimping Process”, Proc. 
41st IEEE Holm Conf. on Elect. Contacts, p. 156, 1996. 

[8]  G. Rosazza Prin, T. Courtin and L. Boyer, “A New Method to Investigate 
Electrical Conduction in Crimp Joints: Influence of the Compaction 
Ratio and Electrical Model”, Proc. 48th IEEE Holm Conf. on Elect. 
Contacts, p. 246, 2002. 

[9]  S. Ogihara, K. Takata, Y. Hattori and K. Yoshida, “Mechanical Analysis 
of the Crimping Connection”, Proc. 52nd IEEE Holm Conf. on Elect. 
Contacts, p. 89, 2006. 

[10] S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, 
New York, 1987. 

[11] M. Runde, R.S. Timsit and N. Magnusson, "Laboratory Performance 
Tests on Aluminum Splices for Power Conductors”, Proc. 24th  Int. Conf. 
Electrical Contacts, p. 157, 2008. 

[12] Compression and Mechanical Connectors for Power Cables with Copper 
or Aluminium Conductors, IEC Int. Standard 61238-1, 2nd ed., 2003. 

[13] D. Tabor, The Hardness of Metals, Oxford, Clarendon Press, 1951. 

[14] S. Kravitz, “Packing Cylinders into Cylindrical Containers”, Math. Mag., 
40, p. 65, 1967. 

[15] R.L. Graham, B.D. Lubachevsky, K.J. Nurmela and P.R.J. Ostergard, 
“Dense Packing of Congruent Circles in a Circle”, Discrete Math., 181, 
p. 139, 1998. 

 
Dr. Roland S. Timsit spent 20 years in R&D in the aluminum 
industry where he carried out extensive work on the properties of 
copper and aluminum electrical connections, lubrication, brazing and 
other surface technologies.  In 1994, he joined AMP Inc. as Director 
of Research and was later appointed Director of Technology and 
Chief Technologist.  He is recipient of the IEEE Ragnar Holm 
Achievement Award and four additional international awards relating 
to electrical contacts and metal joining.  Dr. Timsit is author of over 
120 papers and 15 patents.   He is currently President of Timron 
Scientific Consulting Inc., Toronto, Canada, a company serving the 
technology needs of electrical and electronic connector manufacturers 
and users. 

  
 

167




